Fasciclin II and Beaten path modulate intercellular adhesion in Drosophila larval visual organ development.

نویسندگان

  • A L Holmes
  • J S Heilig
چکیده

Previous studies demonstrated that Fasciclin II and Beaten path are necessary for regulating cell adhesion events that are important for motoneuron development in Drosophila. We observe that the cell adhesion molecule Fasciclin II and the secreted anti-adhesion molecule Beaten path have additional critical roles in the development of at least one set of sensory organs, the larval visual organs. Taken together, phenotypic analysis, genetic interactions, expression studies and rescue experiments suggest that, in normal development, secretion of Beaten path by cells of the optic lobes allows the Fasciclin II-expressing larval visual organ cells to detach from the optic lobes as a cohesive cell cluster. Our results also demonstrate that mechanisms guiding neuronal development may be shared between motoneurons and sensory organs, and provide evidence that titration of adhesion and anti-adhesion is critical for early steps in development of the larval visual system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Dissection of Structural and Functional Components of Synaptic Plasticity. I. Fasciclin II Controls Synaptic Stabilization and Growth

The glutamatergic neuromuscular synapse in Drosophila forms and differentiates into distinct boutons in the embryo and grows by sprouting new boutons throughout larval life. We demonstrate that two axons form approximately 18 boutons on muscles 7 and 6 by hatching and grow to approximately 180 boutons by third instar. We further show that, after synapse formation, the homophilic cell adhesion m...

متن کامل

Control of tissue morphology by Fasciclin III-mediated intercellular adhesion

Morphogenesis is dependent on the orchestration of multiple developmental processes to generate mature functional organs. However, the signalling pathways that coordinate morphogenesis and the mechanisms that translate these signals into tissue shape changes are not well understood. Here, we demonstrate that changes in intercellular adhesion mediated by the transmembrane protein Fasciclin III (...

متن کامل

Embryonic and larval development of the Drosophila mushroom bodies: concentric layer subdivisions and the role of fasciclin II.

Mushroom bodies (MBs) are the centers for olfactory associative learning and elementary cognitive functions in the arthropod brain. In order to understand the cellular and genetic processes that control the early development of MBs, we have performed high-resolution neuroanatomical studies of the embryonic and post-embryonic development of the Drosophila MBs. In the mid to late embryonic stages...

متن کامل

Fasciclin II signals new synapse formation through amyloid precursor protein and the scaffolding protein dX11/Mint.

Cell adhesion molecules (CAMs) have been universally recognized for their essential roles during synapse remodeling. However, the downstream pathways activated by CAMs have remained mostly unknown. Here, we used the Drosophila larval neuromuscular junction to investigate the pathways activated by Fasciclin II (FasII), a transmembrane CAM of the Ig superfamily, during synapse remodeling. We show...

متن کامل

The hangover gene negatively regulates bouton addition at the Drosophila neuromuscular junction

The synaptic growth of neurons during the development and adult life of an animal is a very dynamic and highly regulated process. During larval development in Drosophila new boutons and branches are added at the glutamatergic neuromuscular junction (NMJ) until a balance between neuronal activity and morphological structures is reached. Analysis of several Drosophila mutants suggest that bouton ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 126 2  شماره 

صفحات  -

تاریخ انتشار 1999